Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 115: e190348, 2020. tab, graf
Article in English | LILACS | ID: biblio-1056773

ABSTRACT

BACKGROUND It was previously demonstrated that CMC-20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid molecule, had higher in vitro activity against Giardia intestinalis WB strain than metronidazole and albendazole and similar to nitazoxanide. OBJETIVES To evaluate the in vitro activity of CMC-20 against G. intestinalis strains with different susceptibility/resistance to albendazole and nitazoxanide and evaluate its effect on the distribution of parasite cytoskeletal proteins and its in vivo giardicidal activity. METHODS CMC-20 activity was tested against two isolates from patients with chronic and acute giardiasis, an experimentally induced albendazole resistant strain and a nitazoxanide resistant clinical isolate. CMC-20 effect on the distribution of parasite cytoskeletal proteins was analysed by indirect immunofluorescence and its activity was evaluated in a murine model of giardiasis. FINDINGS CMC-20 showed broad activity against susceptible and resistant strains to albendazole and nitaxozanide. It affected the parasite microtubule reservoir and triggered the parasite encystation. In this process, alpha-7.2 giardin co-localised with CWP-1 protein. CMC-20 reduced the infection time and cyst load in feces of G. muris infected mice similar to albendazole. MAIN CONCLUSIONS The in vitro and in vivo giardicidal activity of CMC-20 suggests its potential use in the treatment of giardiasis.


Subject(s)
Humans , Animals , Mice , Thiazoles/pharmacology , Albendazole/pharmacology , Giardia lamblia/drug effects , Cytoskeletal Proteins/drug effects , Antiprotozoal Agents/pharmacology , Thiazoles/chemistry , Time Factors , Albendazole/chemistry , Fluorescent Antibody Technique, Indirect , Parasitic Sensitivity Tests , Antiprotozoal Agents/chemistry
2.
Mem. Inst. Oswaldo Cruz ; 115: e190348, 2020. tab, graf
Article in English | LILACS | ID: biblio-1091246

ABSTRACT

BACKGROUND It was previously demonstrated that CMC-20, a nitazoxanide and N-methyl-1H-benzimidazole hybrid molecule, had higher in vitro activity against Giardia intestinalis WB strain than metronidazole and albendazole and similar to nitazoxanide. OBJETIVES To evaluate the in vitro activity of CMC-20 against G. intestinalis strains with different susceptibility/resistance to albendazole and nitazoxanide and evaluate its effect on the distribution of parasite cytoskeletal proteins and its in vivo giardicidal activity. METHODS CMC-20 activity was tested against two isolates from patients with chronic and acute giardiasis, an experimentally induced albendazole resistant strain and a nitazoxanide resistant clinical isolate. CMC-20 effect on the distribution of parasite cytoskeletal proteins was analysed by indirect immunofluorescence and its activity was evaluated in a murine model of giardiasis. FINDINGS CMC-20 showed broad activity against susceptible and resistant strains to albendazole and nitaxozanide. It affected the parasite microtubule reservoir and triggered the parasite encystation. In this process, alpha-7.2 giardin co-localised with CWP-1 protein. CMC-20 reduced the infection time and cyst load in feces of G. muris infected mice similar to albendazole. MAIN CONCLUSIONS The in vitro and in vivo giardicidal activity of CMC-20 suggests its potential use in the treatment of giardiasis.


Subject(s)
Humans , Animals , Mice , Thiazoles/pharmacology , Albendazole/pharmacology , Giardia lamblia/drug effects , Cytoskeletal Proteins/drug effects , Antiprotozoal Agents/pharmacology , Thiazoles/chemistry , Time Factors , Albendazole/chemistry , Fluorescent Antibody Technique, Indirect , Parasitic Sensitivity Tests , Antiprotozoal Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL